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 ON THE "FAIR" GAMES PROBLEM FOR THE WEIGHTED

 GENERALIZED PETERSBURG GAMES

 KUANG-HSIEN LIN ( ), TEN-GING CHEN ( i )

 AND LING-HUEY YANG ( )

 n

 ABSTRACT. Let Sn - n - ^ where {Yn,n > 1} arei.i.d. r.v.'s and

 {an,rc > 1} are real numbers. Interpreting anYn as a player's winnings from
 the n-th game, a natural question is whether there is an entrance fee mn to the

 n

 n- th game such that Sn/Mn - > 1 in pr., where Mn = ^raj. Suppose that
 j=1

 {Yn} represent the winnings from a sequence of generalized Petersburg games,
 that is, {yn,n > 1} are i.i.d. random variables with P{Yi = q~k} = pqk~1^
 0 < p = 1 - q < 1, k > 1. It is shown that when an > 0, Vn = 1,2,3,---

 n

 and lim j ( l<J<n max j = oo, then there exist {Mn,?i > 1} such that j=l l<J<n
 Sn/Mn 1 in pr. .

 1. INTRODUCTION

 Consider a sequence of games and a sequence of independent random variables

 {Xn,n >1} where for each n > 1, Xn represents a player's winnings from par-

 ticipating in game n. Suppose that the player pays the (nonrandom) entrance fee

 Revised January 5, 1993.
 AMS 1980 Subject Classifications: Primary 60F05, 60F15.
 Key words: Weighted sums, i.i.d. random variables, almost surely convergence, convegence in
 probability, accumulated entrance fees, fair solution, generalized Petersburg games, weighted gen-
 eralized Petersburg games.
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 mn for the opportunity to play the n-th game, n > 1. For the first n games,
 n n

 Sn = J ~^Xj represents the total winnings and Mn = rePresents the total
 j- i j- i

 or accumulated entrance fees, n > 1. The sequence of entrance fees {mn,n >1}

 is said to be "a fair solution in the weak (resp., strong) sense to the games" if

 Sn/Mn - > 1 in pr. (resp. Sn/Mn - ► 1 almost surely (a.s.)).

 In the current work, attention will primarily be focused on the weighted i.i.d.

 case consisting of Xn's of the form anYn where {an,n > 1} are real numbers

 and {Ynjn > 1} are i.i.d. random variables. Adler and Rosalsky [1, Theorem 3]

 provided a generalization of the Chow-Robbins Theorem [2] to the weighted i.i.d.

 case. They showed for i.i.d. random variables {Yn,n >1} with
 n

 (*) £7|Yi| = oo, n'an' Î and ^ a, = 0(n'an') ,
 i=i

 then for each sequence of real numbers {Mn,n >1} either

 lim inf - 0 a.s. or lim sup - oo a.s.
 n- oo Mn n~*°° Mn

 and, consequently, P| n lim 00 IVJ-fi ^ = l| = 0. n 00 IVJ-fi

 The classical Petersburg game may be described as follows: A fair coin is

 repeatedly tossed. If "heads" occur for the first time on the &-th toss, the player

 wins 2fc dollars. Thus, the player wins X dollars where P{X = 2k} = 2~k, k > 1.

 In [1], Adler and Rosalsky consider the case where the underlying coin need not

 be fair, that is, suppose "heads" occur with probability p where 0 < p < 1. Let

 a be a fixed constant. For the n-th gaine, if "heads" occur for the first time on

 the fc-th toss, the player wins naq~k dollars where q = 1 - p. In other words, the

 winnings Xn from the n-th game are of the form Xn - naYn, where {Yn, n > 1}

 are i.i.d. random variables with

 (1) P{Yi=q-k}=pqk~' k> 1.

 In this paper, we consider the weighted generalized Petersburg games. While no

 fair solution exists in the strong sense when the hypotheses of (*) are satisfied, we
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 On the "Fair" Games Problem for the Weighted Generalized Petersburg Games 23

 try to find a fair solution in the weak sense. That is, for a sequence of real numbers

 {an,n > 1} and i.i.d. random variables {Yn,n > 1} with P{Yļ = q~k} = pqk~l ,

 fc>l,0<p=l - g<l, find conditions on {an, n > 1} which ensure the existence

 of constants {Mn,n >1} for which

 Mn

 obtains. Under such conditions, {Mn,n > 1} can be found explicitly (Adler and

 Rosalsky proved in the special case where an - n". n > 1, a > - 1).

 2. RESULTS

 Let Y be distributed as in (1). We introduce some properties given by Adler

 and Rosalsky [1].

 Lemma 1. ([1]): Let Y be a random variable with P{Y = q~k} = pqk~1,
 k >1, 0 < q = 1 - p < 1.

 (i) For all a > 0, P{Y > a] < (qa)~l .

 (ii) For all a > 1, P{Y > a} > a-1.

 (iii) For all a > q-1, EY2I(Y < a) = q~k~1 - q_1 < q-1a, where k is the largest

 integer such that q~k < a.

 (iv) For all a > q -1, EYI(Y < a) = kpq -1, where k is the largest integer such

 that q~k < a.

 For a given sequence of positive weights {an,n > 1}, define, for each x > 0,

 un(x ) as the expectation of the weighted random variable anYn which is truncated

 at x, that is, un(x) = E[anYnI(anYn < a;)]. In the following theorems, let

 An = ' L X : UÂX ) ^ X ' ' L 3= 1 '
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 24 Kuang-Hsien Lin, Ten-Ging Chen and Ling-Huey Yang

 and

 Mn = sup s k X : ^2 uj(x ) > x f • k 3=1 '

 Theorem 1. Let {Yn , n > 1} be i.i.d. random variables ■ with P{Yi = q k] -

 pqk~x, k >1, 0 < p - 1 - q < 1. If
 n

 ¿«i
 (2) lim - 1 -

 n-+oo max a.
 1 <j<n J

 then

 (i) there exists an integer No, such that An ^ <j>, Vn > No-

 (ii) An C Am, Vm >n>N0.

 (iii) Mn is finite for each fixed n > No, and Mn f oo.

 (Throughout, the symbol log denoted the logarithm to the base ç-1.)

 Proof, (i) For all x > ç-1, Lemma l(iv) ensures that

 pq-1 (log x - 1) < EY'I(Yļ < x) < pq~r logx .

 Therefore, for each j - 1, 2, 3, • • • , u,

 djpq~l (log a~lx - 1) < Uj(x) = Ea,jYjI(ajYj < x) < djpq _1 loga"1^,

 and hence,

 n n

 Z]Kp9_1( log oj1® - 1)] - x < UÂX ) - x
 , S j = 1 ^ = 1

 n

 < log a^x] - x .
 3 = 1

 Let
 n

 K(x) = Y'aiP(l~1iio&a]ix - !)] - x >
 3= 1
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 and
 n

 9n(x) = ioga^x] - X .
 j = 1

 Then we can rewrite (3) as

 (3) hn(x) < 22uÂx) - x ^ 9n(x) ■
 3= 1

 n

 Also, we note that hn(x ) has a maximun value at Xq1^ = pq _1 ^ dj log e, and
 3= 1

 n

 n y a'
 K(x{g))=pq-X ¿aylogf- n

 Lj=i ' aj e /.
 Now, condition (2) implies that, for a given fixed 0 < p < 1, there exists an

 integer No such that

 n

 ¿«i
 -

 max gl ploge
 l<j<n

 Hence for each n > N0

 n

 y, a,j

 m4") = w' Ļtī Ê'W'" V ploge)1 e J >o. Ļtī V aj e J

 Therefore, by (3)', we get

 An = ix : uj(x ) >x'^<1>, Vn > N0 .
 K i= i '

 m n

 (ii) Since Uj{x) > 0, Vj, we have ^T,Uj(x) > ^Uj(x) > x, Vm > n > N0.
 i= i i=i

 Therefore, An C Am, Vm > n > N0.

 (iii) For fixed n > iV0,

 n

 9n(x) - l°gaJ1;r] - X -* -oo , as X - > oo .
 i=l
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 26 Kuang-Hsien Lin, Ten-Ging Chen and Ling-Huey Yang

 Thus, by (3)',

 Mn = sup< X : ^2 Uj(x) > X > is bounded away from infinity.
 ^ i=i '

 To prove Mn f oo as n - ► oo, note that (by (ii))

 AnC Am, Vm >n>N0

 and thus Mn < Mm , Vm > n > No.

 Finally, under the definition of Mn and Xq"', we have

 Mn = sup An > x<n) = pç"1 [Y, a A log e ,
 ¿=i J

 and this ensures that Mn - ► oo, as n - > oo; since

 n

 í>; n
 - -

 max a7- > '=* 7^ l<j<n max a7- > '=* J2aj
 3= 1

 for positive numbers {an}.

 Theorem 2. Let {Yn , n > 1} i.i.d. random variables with P{Yļ = q k} =

 pqk~l, fc>l;0<p = l - q < 1. For a sequence {an,n > 1} of positive real
 n

 Í2aJ
 numbers, if lim

 n-+oo max a' J 1 <j<n J

 /. '

 (i) /. '
 max a7 J 1 <j<n J

 Ê«i( M.)
 (ii) J~X , ^

 Mn , ^

 n

 (iii) ^aj=o(Mn).
 i= 1
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 On the "Fair" Games Problem for the Weighted Generalized Petersburg Games 27

 Proof, (i) We recall that

 Mn = sup An > 4n) = pq'1 ( ai J ) lo§ e ' i=i J

 !°ge
 xu X • Mn ^ > S=1 J
 xu that X is,

 max a J i max a7 J 1 <j<n J 1 <j<n J

 n

 Now, letting n - > oo and using lim - -
 n~*°° max a? J 1 <j<n J

 we conclude that (i) is true.

 (ii) Since

 Mn = sup< ^ X : ^2 uj(x) ^ x J f ? ^ 3= 1 J

 then either

 ¿>i(Mn) E^(Mn) E^(Mn+)
 (4)

 Mn Mn Mn

 In the latter case, it follows

 ^2 uj(Mn ) ^ ui (.M* ) n
 0 s ^

 (5)
 n

 n

 j = 1 iK/n
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 Now, by (i) and the fact that EYn = oo, Vn, we have
 -in n

 -r- y a, 3 y a, 3 -r- Mn +-t a, 3 a, 3
 o <

 -j¡7" è uj(Mn) ¿ aiu*(aJ1M„)
 iWn j=i j=i

 < - / -

 t¿*(Mn/ ' max a,-) ' i<j<n '

 where

 u*(x) = EY'I(Yļ < X ).

 è
 7 1

 Therefore, we get lim

 n-oo Mn

 (iii) As in the proof of (ii), we have
 n

 7 = 1 1
 0 < -

 3= 1

 Note that
 n n n

 J2ai Y.aJ Y,UÂMn)
 Í= 1 _ i=l

 2^Uj(Mn)
 3= 1

 It follows from (ii) that
 n

 yi = °(Mn) .
 i=l

 One preliminary lemma 2 will be established before stating the main results.

 Lemma 2. Zeť > 1} be independent random variables and {6n,n > 1}
 be real numbers with 0 < bn f oo. Then

 w inpr'
 On j=1 j=1
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 if

 (7) « ¿P{|X,| >0„} = o(l),
 3 = 1

 (8) (") -¿rÊ£Xji(MO|<M = o(i),
 71 j= 1

 Proof. To prove (6), set

 x; = x,i('x, I < ¡>„) , zt = xr - Ex't .

 Then (ii) entails

 t~ è zi - ► ° in pr- »
 0n j=1

 since Ve > 0,

 ri- ! żmf

 j^EXļl{'X3' < bn)
 = -

 (ebnf

 as n - » oo. That is,

 (9) T-fè-*"; - ¿SATjí'd-Xil < 4ta)ļ - • 0 in pr..
 °n lj=1 j= i -I

 Next we will show that

 ¿Xj-¿X; - 0 in pr..
 3=1 3 = 1

 It follows from the first condition that

 WE*) * ¿x'} J < Êpix> / jc;> = xmi^I > M = o(i). S= i j= i J ¿=i j=i

 Therefore, for all e > 0,

 P{ÈX,~ÊXi k >4SP{ŽX^Ž^'}^0' J J as » - k 3 = 1 j=l J S = 1 J = 1 J
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 Hence

 (10) T~ - ► 0 in pr. .
 n lj= i j= i J

 Combining (9) with (10), we conclude that

 - 0 in pr..
 On L j=1 j=1

 Under the condition (2), it will be shown that (6) is true if {Xn} and {6n} are

 replaced by {anYn} and {Mn}, respectively. And with this, the main result can be

 established.

 Theorem 3. Let {Yn,n > 1} be i.i.d. random variables with P{YX - q~k} =

 pqk~x, k>l, 0<p=l - q<l, and let {an,n > 1} be a sequence of positive real
 numbers .

 n

 i n
 If lim - : -

 n~+°° max a, J Mn fri 1 <j<n J J

 Proof. By Lemma 1 (i) and (iii), we have
 n

 « n 2
 > «.} < T,(gafM^) = ,

 i= 1 j= 1 *IVãn
 n

 y "]ūj

 ļģr < U.) <

 Now conditions (7) and (8) follow directly from Theorem 2 (iii), whence via
 Lemma 2

 (u) - èEaM(<*iyi s M«)l - > ° in pr-
 n Lj=l j=l J

 Finally, combining (11) with Theorem 2 (ii), we have

 1 71
 T7-Eaiyi- inPr--
 1V±n j= 1
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